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The numerical scheme of A. Arakawa is used to carry out a numerical analysis of 
the cross flow past two successively positioned cylinders. 

In the present work, we investigate the cross flow of a viscous heat-conducting incom- 
pressible fluid past two cylinders with equal radii R* (here and in what follows, the index 
* indicates a dimensionless quantity). The cylinders are positioned in succession in the 
direction of flow and are located at a quite close distance L* from one another, so that 
the nature of the flow past them is affected by the interaction of the perturbations that 
each contributes to the flow. It is assumed that the liquid has a constant velocity U~ and 
temperature T~ at infinity; the surface temperature of the cylinders T$ is assumed to be 
constant. In constructing the solution, we will neglect the effect of the possible asymmetry 
of the flow caused by the unstable process of wake formation. The symmetry condition for the 
flow in this case limits the range of Reynolds numbers to comparatively low magnitudes on 
the order of 30-40 according to data on flow past a single cylinder (see, e.g., [i]). In 
spite of the limitation indicated, it should be noted that the problem being examined is 
important for studying many phenomena; the results of its solution can be, in particular, 
used in carrying out thermal flowmeter measurements of pulsations in flow parameters. 

We construct the solution in difference form using a nonstationary formulation in a 
polar coordinate system (r, e), whose origin we place at the center of the first (along the 
flow) and second (in the wake behind it) cylinder. The region in which the calculations 
are carried out, bounded by the cylinder surfaces, the symmetry plane, and the surfaces 
far away from the cylinders on which the unperturbed flow conditions or conditions for con- 
tinuation of the solution ("soft" conditions) are satisfied, is separated into two subregions, 
connected to the first and second cylinders (Fig. i). We used the exact Navier--Stokes 
equations in the form of the vortex transport equation in vorticity m and stream function 
variables, and the energy equation relative to the static flow temperature T. In the trans- 
formed system of coordinates (~, 8), where ~ = in(r), the starting system of equations in 
dimensionless form is written as follows: 

---~ = exp (--  2~) A~; (1) 

- -  exp (2~) __0f + l + 2 kf  = 0, (2) 
Ot RePr v ' 

where f ~, y=0 for the vortex t~ansport equation; f ~ T, y=l for the energy equation; I 
represents the convective terms; A= 32/3~ 2+32/~2 

In (i) and (2), the radius of the cylinder R* and the velocity U~ are used as character- 
istic quantities: the dimensionless temperature is related to the dimensional temperature 
by the following relation T = (T* -- T~)/(T~ -- T~). The Reynolds (Re) and Prandtl (Pr) 
numbers, as well as the local Nusselt (Nu) number determined during the calculation, are 
represented in the form Re=2R*U~/~*; Pr=~*/a*; Nu= 2R*e*/X*. Evidently, the local Nusselt 
number is expressed in terms of the temperature gradient on the cylinder surface Nu = --2(3T/ 
~r)w. 

In replacing system (i) and (2) by its difference analog, we will use A. Arakawa's 
second-order scheme in approximating the convective terms I [2]. Experience in using this 
scheme shows that it is possible to obtain a stable solution of the Navier--Stokes equations 
over a quite wide range of Re numbers, when the difference approximation of the time 
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Fig. i. Computational region and difference grid. 

derivatives also has second-order accuracy. This is attained here by centering the time 
derivatives 3f/~t. 

Let us formulate the boundary conditions for the computational region indicated in Fig. 
i. First we will consider the conditions that are identical for the first and second sub- 
regions. 

We assume that ~w = 0 on the cylinder surface (~ = 0). Solving Eq. (i) and using the 
linear representation for ~ in the vicinity of the wall, we obtain for the vorticity on it 

~ w  = - -  2 ~ + 1 / h 2 ,  ( 3 )  

where ~w+l is the stream function of the layer of the difference scheme closest to the 
cylinder; h is the grid step. For the wall temperature, we have Tw= 0. On the symmetry 
axis (0 =7, 27), ~ =~= 3T/3% =0. On the outer boundary of the computational region, taking 
into account the fact that the flow here is unperturbed, we obtain ~ =T=0; ~ =r~sine, where 
r~ = exp(E) is the radial distance from the center of the cylinder to the external boundary 
of the computational region; E is the value of ~, corresponding to r =r~. 

Due to the mutual effect of the cylinders on one another, we introduce into the analy- 
sis the following additional boundary conditions, taking into account this influence. The 
essence of the formulation of these conditions lies in the fact that among the inner nodes 
of the computational subregions, we separate out nodes which are then considered as boundary 
nodes in the computational process. As an illustration, we will show how the boundary nodes 
are constructed and how the conditions of them are determined for the first computational 
subregion (Fig. i). 

i. We construct the line AB perpendicular to the axis of symmetry, centered between 
the centers of the cylinders (the point A lies on the intersection of the external boun- 
daries, and B lies on the axis of symmetry). 

2. For each radial coordinate grid line in the first computational subregion, inter- 
secting AB, we determine the node that is closest to the line AB and lies to the right of 
it (for example, nodes 2, 3, and 5). If such nodes lie on different circles for neighbor- 
ing radii, then we add the required number of nodes so that the nodes located within the 
field of the first computational subregion are completely defined in accordance with the 
computational scheme adopted. We find that it is necessary to add nodes 1 and 4 to the 
boundary nodes that we already have. 

3. Each boundary node of the first computational subregion must fall into some cell 
of the second computational subregion. Thus, boundary node 4 is located in the cell formed 
by nodes 8, 9, i0, and ii. Then, the variables at node 4 are determined as follows with 
the help of linear interpolation: 

= + + z,of,o + 6 d . ,  

where L i are the interpolation coefficients, which remain unchanged during the computation; 
f ~, ~, and T. 

Similar relations, constructed for each boundary node (except the fifth node, where 
the flow parameters are obtained from the symmetry conditions), completely determine for 
the first computational subregion the boundary conditions sought, constructed taking into 
account the effect of the perturbations introduced by the second cylinder. 

The boundary conditions for the flow parameters in the section where the solutions for 
the first or second subregions are joined can then be written in the following generalized 
form 
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Fig. 2. Lines of constant values of the 
stream function (above) and temperature 
(below) for the following values of the 
distances between the cylinders: a) L = 4; 
b) L=6; c) L=I0. 

(4) 
i=1 

where j indicates any boundary node in the first or second subregions, and the sum is taken 
over the product of the interpolation coefficients and the corresponding parameters f ~ 4, ~, 
and T at the nodes of the second or first subregions, surrounding node j. 

The numerical procedure provides for separate solution of the dynamic and heat problems. 
First, the stream and vorticity function fields are calculated in the following order: 

i) the initial conditions for the stream and vorticity functions are given in both 
computational subregions (4 =m=0); 

2) ~ and m are calculated at the boundary nodes of the first computational subregion 
in accordance with (4); 

3) an iterative procedure is used for solving (i) in the first computational subregion; 

4) the vorticity ~w is determined on the surface of the first cylinder according to 
(3); 

5) the vorticity field is found from (2) for the first computational subregion at the 
first time step; 

6) ~ and ~ are computed at the boundary nodes of the second computational subregion 
according to (4); 

7) an iteration procedure is used for solving (i) in the second computational subregion; 

8) the vorticity ~w is determined on the surface of the second cylinder according to 
(3); 

9) the vorticity field is found from (2) for the second computational subregion at the 
first time step; 
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Fig. 3. Pressure distribution (a, b) along 
the surface of the cylinder and distribution 
of the local Nusselt number (c, d) on the sur- 
face of the cylinder (a, c correspond to the 
first cylinders; b, d correspond to the second 
one): i) L= 2; 2) L=4; 3) L= 6; 4) L=I0; 5) 
L= 20. 8 is in degrees. 

i0) the values of ~ and m obtained for both computational subregions are used as initial 
values, and the entire computational process, beginning with the second point, is repeated 
at the next time step. 

The computation continues until a stationary state is reached; the criterion used for 
establishing the steady state is that the time derivative of the magnitudes of the drag 
coefficients Cx, referred to p*R*U~ 2, are approximately equal to 0 for each cylinder. In 
a polar coordinate system, C x is defined as the sum of the pressure drag coefficient Cxp 
and the friction drag coefficient Cxf , where 

2~ 2~ 

C x p = - -  pwcosSdS; C x s = - -  R---~ ~wsinOdO. 

The p r e s s u r e  on t h e  s u r f a c e  o f  t h e  c y l i n d e r  Pw, r e f e r r e d  to  p*U~2/2,  i s  d e t e r m i n e d  from t h e  
e q u a t i o n  o f  m o t i o n  

8 

Pw ~ Re 

where  w i t h o u t  l o s s  o f  g e n e r a l i t y  t h e  c o n s t a n t  of  i n t e g r a t i o n  i s  s e t  e q u a l  to  z e r o .  

A f t e r  s o l v i n g  t h e  dynamic p rob lem,  we p r o c e e d  to  t h e  s o l u t i o n  o f  t h e  h e a t  p rob lem,  
using the field of values obtained for the stream function. The numerical procedure in this 
case involves determining the values of the temperature T at the boundary nodes from (4) and 
solving the energy equation (2) for each computational subregion successively in time. The 
calculation is carried out until a steady state is reached; the criterion used for the 
steady state is that the time derivative of the magnitude of the Nusselt number averaged 
over the perimeter of the cylinder approximately equals zero: 

2~ 

NUav= (.f Nu d0)/n. 

The calculation of the symmetrical flow past two cylinders of equal size placed in 
series along the flow was carried out for Re=40 and Pr =0.7. The distances between the 
cylinders were L= 2, 4, 6, i0, and 20. The computational scheme was first tried out on the 
problem of the flow past an isolated cylinder (L § Good agreement with the available 
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Fig. 4. Dependence of 
the drag coefficient 
and the averaged Nus- 
selt number for the 
first (along the flow) 
and second cylinders 

as a function of the 
distance between them~ 

i) Cxl ; 2) Cx2 ~ 3) 
Nuavl; 4) Nuav 2. 

experimental and numerical results for the given problem was obtained for the following 
grid parameters: h=~/20; Z =7; and At = 0.05. After carrying out a number of numerical 
experiments, it was established that it is preferable to use "soft" boundary conditions 
for the temperature 3T/~x = 0 on the rear part of the outer boundary of the computational 
region (~ = Z; 47/3 < 0 < 2~). Introducing this condition permitted avoiding increasing the 
number of nodes in the radial direction, which otherwise would have to be done in order to 
obtain a convergent solution of the thermal problem. The solution of the dynamic and ther- 
mal problem of the flow past an isolated cylinder with Re = 40 and Pr = 0.7 gave C x = 1.62 and 
Nuav=3.15. From experimental data [3] and numerical calculations [i, 4, 5], we have for 
Cx, respectively, 1.6, 1.593, 1.63, and 1.6. According to the experimental data in [6] and 
numerical calculations [5, 7], Nuav equals, respectively, 3.17, 3.42, and 3.57. It should 
also be noted that quite good agreement between the computational and experimental data for 
the flow past an isolated cylinder was obtained for such characteristics as the distribution 
of pressure along the cylinder surface, the size of the wake behind the cylinder, the posi- 
tion of the point of flow detachment on the cylinder, and so on (see, for example, [5, 8]). 

The calculation of the flow past two cylinders was carried out with the same grid para- 
meters that were used in the case of the flow past an isolated cylinder. "Soft" conditions 
for the temperature were imposed on the rear part of the outer boundary for the second cylin- 
der along the flow. Some results of the calculation are presented in what follows. Figs. 
2a, b, and c illustrate the flow pattern as lines showing the constant value of the stream 
function and temperature for L= 4, 6, and i0. Figures 3a-d show the profiles of the pressure 
distribution and the local Nusselt number on the surface of the cylinders. Figure 4 shows 
the dependence of the drag coefficient Cx and the Nusselt number Nuav averaged over the 
perimeter of a cylinder for both cylinders as a function of the distance between them. 

Analysis of the computed data leads to a number of interesting observations. When the 
cylinders are joined (L = 2), a unified, more streamlined system than that of the isolated 
cylinder is formed. The vortex in the wake behind the second cylinder in this case is less 
developed, and the drag of the system is smaller in magnitude than the drag of an isolated 
cylinder. When the distance between the cylinders is increased (L = 4 and 6), a closed cir- 
culating flow forms in the space between them. In this case, there is a gradual decrease, 
and then complete disappearance of the circulating zone in the wake behind the second cylin- 
der. The drag of the second cylinder remains less than zero (the effect of the drag force) 
up to L~4; the total drag of both cylinders is comparable in magnitude to the drag of the 
isolated cylinder (the minimum in the drag of the system of cylinders is observed for L ~ 3; 
for L ~6, their drag is lower than the drag of the isolated cylinder). Further increase 
in the distance to L = i0 and 20 leads to separation of the circulating zone from the second 
cylinder, so that the flow past this cylinder is free of detachment. The fact that the flow 
past the second cylinder along the flow is free of detachment, apparently, can be explained 
physically in connection with the phenomenon known as the Koanda effect. Indeed, in the 
wake behind the first cylinder, in this case, a stream-type flow is realized with a peri- 
pheral velocity maximum. As shown in [9], in such a flow, due to the displacement of the 
velocity maximum from the symmetry surface of the body, liquid is sucked from the outer 
region directly in contact with the body past which the flow occurs (in this case, the 
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second cylinder) into the stream so formed. As a result, the flow in it can be less dense 
than in the outer region. The pressure differential formed in this case, although not 
large in absolute magnitude, nevertheless leads to curvature of the stream and its sticking 
to the cylinder. The drag of the cylinder in this case increases and becomes very close to 
the magnitude of the drag for an isolated cylinder; the drag of the second cylinder (as, by 
the way, the heat flow also) increases almost linearly with an increase in L. 

An interesting practical conclusion follows from an analysis of the results presented 
in Fig. 4. If a performance function, characterizing maximum heat extraction for the system 
of cylinders for minimum system drag in the form (Nuav ~ +Nuav2)/(Cxl +Cx2), is constructed, 
then the latter, as is evident from the figure, has a maximum for a distance L separating 
the cylinders given by L ~ 3-4. This distance, as follows from what has been said above, is 
close to the magnitude of L corresponding to the minimum drag attained by the system of 
cylinders in the given flow regime (Re = 40), when a quite well-developed circulating flow 
is formed in the space between the cylinders. 

NOTATION 

R, radius of the cylinder; L, distance between the centers of the cylinders; (r, 8), 
polar coordinates; (~, 8), transformed coordinates; U, velocity; T, temperature; ~, vorti- 
city; ~, stream function; p, pressure; t, time; h, step in the difference grid; At, time 
step; ~, coefficient of kinematic viscosity; a, coefficient of thermal diffusivity; ~, coef- 
ficient of heat transfer; l, coefficient of thermal conductivity; Re, Reynolds number; Pr, 
Prandtl's number; Nu, Nusselt number; Nuav , Nusselt number averaged over the perimeter of 
the cylinder; I, convective terms; A, Laplace operator; y=0, i, a coefficient that deter- 
mines the form of Eq. (2); Cxp , pressure drag coefficient; Cxf , friction drag coefficient; 
Cx=Cxp+Cxf, drag coefficient; p, density; l, an interpolation coefficient; x, direction 
of the symmetry axis 8 = 27. The indices indicate the following: *, a dimensional quantity; 
=, unperturbed flow; w, conditions at the wall; w+l, layer closest to the wall; i, first 
cylinder along the flow; 2, second cylinder along the flow; i and j, nodes in the grid. 
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